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a  b  s  t  r  a  c  t

The  single-particle  model  is a useful  mathematical  representation  for state-of-charge  observation,  param-
eter  identification  and  control  of  lithium-ion  batteries.  This  model  is a  simplified  electrochemical
formulation  where  ionic  intercalation,  described  as  a diffusive  process,  is considered  as  the  dominant
dynamics.  In  the  search  for a  more  efficient  numerical  solution  of  the  involved  partial  differential  equa-
tions,  many  approximations  have  been  reported.  However,  most  of  them  are  valid  just  under  restricted
operating  conditions.  In  this  paper,  spatial  semidiscretization  is reintroduced  as  the  precision  of  approx-
imations  could  be  arbitrarily  chosen  with  this  approach.  Three  discretization  methods  are  applied  in a
classical  fashion,  evaluated  and  compared  in both  time  and  frequency  domains:  finite difference,  finite
ingle-particle model
rder reduction
iscretization

element  and differential  quadrature.  In  addition,  two  commonly  used  low  order  approximations  are
tested against  semidiscretization  approximations.  The  best results  are  obtained  with  the  differential
quadrature  method  in  its polynomial  version.  Two  model  truncation  criteria  are  also  explored,  one  is
based on  bandwidth  selection  and  the  other  on  residue  analysis,  where  the  first  resulted  to  be  more
conservative.  Finally,  simulations  of  representative  reduced  order  approximations  of  the  single-particle

nst  e
model  are  compared  agai

. Introduction

Due to a natural minimization trend, portable applications from
ellular phones to hybrid electric vehicles require more efficient
ower sources such that energy could be stored in smaller and more

ightweight devices. On the other hand, renewable resources like
ind and solar energies are being used to complement or substitute

raditional sources of electricity generation, helping to reduce the
roduction of pollutants and the shortage of fossil fuels. However,
s alternative energy sources depend on weather, electricity gener-
ted in excess should be stored and then released when demand is
reater than production. Thereby, energy storage becomes crucial,
aking possible the existence of portable appliances and trans-

orming renewable sources into reliable supplies.
Reviews about storage devices currently used in power systems

ould be found in [1,2]. Electrochemical batteries have represented
he most popular alternative for more than one hundred years.
istorical outlines about development of battery technologies,

omparisons of materials and chemistries as well as specifications
an be found in [3–5]. Batteries are in general low-power and high-
nergy storage devices; they can sustain plain charge or discharge
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xperimental  data  found  in the  literature.
© 2011 Elsevier B.V. All rights reserved.

conditions for long periods but are not well suited to manage power
peaks. Dominant families of secondary (reversible or rechargeable)
batteries are the lead-acid, nickel-based and lithium-ion (Li-Ion)
systems. This last family represents the most promising technology,
displacing nickel-based systems in the fields of electronic gadgets
and medical implants, and is expected to be present in coming
hybrid electric vehicles ([6–8]).

Li-Ion batteries posses the best performance features. For
lead-acid batteries specific energy and power are 30 Wh kg−1

and 180 W kg−1, whereas these specifications are 80–150 Wh kg−1

and 500–2000 W kg−1 for Li-Ion, and 100–150 Wh kg−1 and
50–250 W kg−1 for Li-Ion polymer batteries, respectively. Li-Ion
systems do not present the memory effect, typical of the nickel-
based family, have energy efficiencies of 90–100%, self discharge
rates as low as 5% per month, can reach more than 1500 full
charge–discharge cycles and have an open circuit potential around
3.7 V [2]. Although Li-Ion batteries have low environmental impact,
many challenges are being faced in regard to materials and manu-
facturing processes to make this technology sustainable. Research
about organic compounds, nanomaterials and lithium alternatives
like aluminum and magnesium are being strongly impelled [9].

Mathematical models of batteries are combinations of static

and/or dynamic relationships that set a correspondence between
current and voltage at battery terminals (impedance), the only two
measurable variables. Modeling is often intended to on-line esti-
mation of non-measurable variables as the state-of-charge and

dx.doi.org/10.1016/j.jpowsour.2011.06.091
http://www.sciencedirect.com/science/journal/03787753
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he state-of-health (aging), as well as impedance identification.
ther important objective is off-line battery simulation for design.
imulations make it possible the improvement of materials and
ptimization without actual manufacturing, reducing development
ime and costs [3].

Li-Ion battery models are in general of two types: equivalent cir-
uits and electrochemical models. The first are very popular, being
ntuitive for people familiar with analysis of electric networks.
here is a wide variety of them and are mainly used for impedance
dentification. Simple circuits, as the embedded in the Advanced
ehicle Simulator (ADVISOR) of the US National Renewable Energy
aboratory [10], or those reported in [11,12],  are extensively used
n practice, but more elaborated versions as [13–15] are also
vailable. For these models, constitutive relationships of elements
re complicated heuristic functions of state-of-charge (SOC) and
emperature, and their use for analysis results difficult. SOC is
he fundamental variable for battery control. Nevertheless, when
quivalent circuits are used, SOC is estimated through numerical
ntegration of the applied current (Coulomb counting), a not very
ccurate even robust method which drives to conservative power
nd energy management algorithms.

Electrochemical models were originally thought for battery
esign and optimization as they offer a better illustration about cell
unctioning and limitations. The formulation is based on physical
nd chemical principles, resulting in sets of coupled partial dif-
erential and algebraic equations. This approach allows accurate
alculations of the spatial and temporal evolution of internal vari-
bles. Basic electrochemical models stated for charge–discharge
rediction of Li-Ion cells with two porous electrodes, the systems
urrently used for power applications, can be found in [16–19],
hereas a more formal reformulation is shown in [20]. Addition of

urther phenomena to the basic models like temperature changes,
lectric double-layer capacitance effect, battery aging and porosity
ariation are explored in [21–24],  for example.

Obtaining rigorous numerical solutions of electrochemical mod-
ls is time consuming and requires substantial computational
esources. Equations are strongly coupled and this worsens as
upplementary phenomena are appended. Even though, because
f their physical meaning, high accuracy and more realistic SOC
redictions, many efforts are being carried out to find appropri-
te simplifications and reduced order approximations that allow
lectrochemical models to be useful for on-line estimation and
dentification; see for example [25–33].  Depending on the appli-
ation requirements, the first step is to define which dynamics are
f interest, for example, concentration of lithium ions in the solid
tate, concentration of electrolyte in the electrolytic solution, the
ffect of double layer capacitance, cell aging, temperature changes
r any combination. Then, the other dynamics could be either
eglected or supposed static, driving to simpler models. As most
f the phenomena involved in the operation of a lithium-ion cell
re described by distributed parameter equations, simplified mod-
ls can contain infinite order equations that should be efficiently
umerically solved for on-line implementation.

In this paper, the single-particle model is studied as it con-
titutes a useful mathematical representation for state-of-charge
bservation, parameter identification and control of lithium-ion
atteries. This model is a simplified electrochemical formulation
here ionic intercalation, described as a diffusive process, is con-

idered as the dominant dynamics. Such phenomenon is directly
elated to the SOC of the cell and voltage variations at the cell ter-
inals. The other dynamics, referred above, are neglected because

hey have a weaker influence on the relationship between input

urrent and output voltage. In particular, changes in temperature
re ignored as the focus in this paper is on studying the effect of
ontinuous charging–discharging cycles when a steady sate tem-
erature has been reached.
 Power Sources 196 (2011) 10267– 10279

The state equation of the single-particle electrochemical model
is studied with the goal of finding reduced order approximations
that represent adequately the battery main dynamics for some
given operation conditions. Spatial semidiscretization approach is
reintroduced for order reduction and three discretization meth-
ods, combined with four distributions of discretization points,
are applied in a classical fashion: finite difference, finite element
and differential quadrature. Because of their recurrent appear-
ance in the literature, dynamical approximations based on second
and fourth order polynomials are also evaluated and compared
against semidiscretization approximations. Additionally, two order
selection or truncation criteria, suggested but not explored in the
literature, are discussed and contrasted. The first, more conserva-
tive, consists on selecting the bandwidth of the approximation such
that it covers at least the major part of the energy spectrum of some
proposed test signal. The second criterion is more relaxed and is
based on a residue analysis of the convolution between the state
equation and the test signal, driving to more practical results.

Approximations are first evaluated in the time domain to have
a preliminary surmise about which is more accurate in comparison
to a base solution. In this case, the test signal consists on a rectangu-
lar pulse followed by a relaxation time, whose duration is such that
allows to observe the whole transient response under forced as well
as under free excitation. Then, the frequency response of approx-
imations is compared against that of an analytic transfer function
related to the state equation in order to confirm the results obtained
in the time domain tests. Finally, representative cases of all con-
sidered approximations are applied to the single-particle model
and their response to the test signal specified in the FreedomCAR
manual [34] is compared against experimental data extracted from
[35]. Results indicate that differential quadrature approximations
are the best and that low order polynomial-based approximations,
commonly found in the literature, fail for pulsating operation con-
ditions.

2. Single-particle electrochemical model

The considered Li-Ion cell, presented in [19], is one of 72 units
taking part of a 6 Ah and 276 V pack designed for power assistance
in hybrid electric vehicles. Secondary Li-Ion cells consist of three
main components: negative electrode, separator and positive elec-
trode. Electrodes are made of porous materials with insertions of
lithium and inert conductive particles; carbon composites are used
for the negative and metal oxides for the positive electrode. Separa-
tor is also a porous but electronically non-conductive matrix placed
between the electrodes. Pores inside the three elements are filled
with an electrolyte solution based on a lithium salt, setting up a
ionic path all along the cell.

During discharge, lithium ions (Li+) inside the active material of
the negative electrode diffuse towards the boundary between solid
and solution phases, and react (deintercalation). Once in the elec-
trolyte, ions travel to the positive electrode where a corresponding
reaction takes place (intercalation), but now ions diffuse from the
interphase inside the solid phase. To keep an electric balance, elec-
trons are delivered from the negative electrode and received in the
positive, flowing through an external circuit as a usable current; an
inverse and complementary process occurs when charging.

Electrochemical models of Li-Ion cells are based on the porous
electrode theory [36], that states that porous electrodes could be
treated as two overlapped phases. Because of the complexity of
pores geometry, distribution of variables is analyzed just in the

longitudinal dimension x that goes along the three elements of
the cell. Major variables, as electrostatic potential in both phases,
concentration of Li+ in the solid matrix, concentration of elec-
trolyte in the solution and ionic flux in the interphase depend on
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oth time and position x. The solid phase is modeled as a set of
egular forms, usually spheres of the same radius. Lithium concen-
ration in solid phase also depends on r, considered as a second
seudo-dimension, representing the position along the radius of a
epresentative sphere of each electrode.

From simulations reported in [19,29,35] of the cell in study, it is
bserved that ionic flux in the solid-solution interphase, as well as
oncentration of Li+ in the solid phase, become nearly independent
f position x along electrodes very fast after the beginning of dis-
harge. Furthermore, if these two variables are always considered
ndependent of position x, the result is a decoupled model where
ithium diffusion in the solid phase (intercalation and deinterca-
ation) represents the dominant dynamics in the current–voltage
elationship of the cell. In this case, electrolyte concentration in
he solution is assumed constant, which drives to a simplification
nown as the single-particle electrochemical model. Such model
as first introduced for nickel-metal hydride (NiMH) cells [37],

hen extended for Li-Ion batteries [26] and has been used for SOC
stimation in works as [38–40].  Results of a deduction similar to
hat followed in [39] are summarized below and a more formal
pproach can be found in [20].

In the single particle model, lithium-ion diffusion in the solid
hase is studied by means of one representative particle for each
lectrode. This phenomenon is described by the radial diffusion
quation

∂c

∂t
= D

1
r2

∂

∂r

(
r2 ∂c

∂r

)
(1)

ith boundary conditions

∂c

∂r

∣∣∣∣
r=0

= 0 and
∂c

∂r

∣∣∣∣
r=R

= −jn
D

, (2)

here c = c(t, r) is the concentration of lithium ions inside the rep-
esentative particle of the related electrode, D is the diffusivity
onstant of Li+ in the solid phase, r is the position along the radius
f the representative particle and R is the total radius of the parti-
le. jn = jn(t) is the normal ion flux in the solid-solution boundary,
veraged along the associated electrode (see [39]) such that it is
ndependent of position x and proportional to the applied current
(t),

n,p = −I

apFıpA
and jn,n = I

anFınA
(3)

or positive and negative electrodes, respectively. ı is the electrode
hickness, A is the sectional area of the cell, F is the Faraday’s con-
tant and a is the electrode specific contact area. When needed,
ubscripts p, n and sep are included to distinguish between positive,
egative electrodes and separator.

Voltage in terminals V is the difference of solid phase potential
s at cell edges:

 = �s|x=0 − �s|x=L − Rf I, (4)

here Rf is the equivalent film resistance at solid-solution inter-
hase of electrodes and L = ıp + ısep + ın. Averaging the cell variables
long electrodes and separator, Eq. (4) is rewritten as

 = Up(�p) − Un(�n) + �p − �n + �e,p − �e,n − Rf I, (5)

ith overpotential defined as � = �s − �e − U and �e the elec-
rostatic potential in the solution. Stoichiometry � = c | r=R/cmax is
efined as the normalized concentration of Li+ in the solid-phase,
lso known as the electrode state-of-charge (do not confuse with

attery state-of-charge or SOC). Open circuit potential functions
(�) of both electrodes, taken from [19], are shown in Appendix A
s well. Usually, the process of electrolyte solution is ignored; in
his case such assumption means that �e,p − �e,n = 0. Instead, ohmic
 Power Sources 196 (2011) 10267– 10279 10269

losses due to solution-phase are calculated for the three elements
in [39]. The consecutive addition of losses results in

�e,p − �e,n = −
(

ıp

2�p
+ ısep

�sep
+ ın

2�n

)
I

A
, (6)

where ısep is the separator thickness and �, with the corresponding
subscript, represents the effective conductivity of the electrolyte
solution in each element.

In [39], overpotentials �p and �n are found from the non-linear
Butler–Volmer reaction equation, resulting in an expression equiv-
alent to

�p − �n = 2RT
F ln

⎡
⎣ (Fjn,p/i0,p) +

√
(Fjn,p/i0,p)2 + 1

(Fjn,n/i0,n) +
√

(Fjn,n/i0,n)2 + 1

⎤
⎦ (7)

where i0 is the exchange current density, R the ideal gas constant
and T the absolute temperature. Alternatively, using the linearized
Butler–Volmer equation

jn = i0
(˛a + ˛c)�

RT , (8)

with ˛a = ˛c = 0.5, the results is

�p − �n = RT
F

(
1

apıpi0,p
− 1

anıni0,n

)
I

A
. (9)

Taking (9) instead of (7),  voltage at terminals is finally

V = Up(�p) − Un(�n) − R�I, (10)

with the total resistance R� defined as

R� = 1
A

(
ıp

2�p
+ ısep

�sep
+ ın

2�n
− RT

apıpi0,pF
+ RT

anıni0,nF

)
+ Rf . (11)

In summary, the single-particle electrochemical model is rep-
resented by Eqs. (1)–(3) and (10), where the applied current I is
the input, the voltage V at terminals is the output signal and the
state variables cn and cp correspond to concentration of Li+ in both
electrodes. Values of parameters, extracted from [29], are listed
in Appendix B. For pulsating charge–discharge conditions around
nominal current, assumption of uniform electrolyte concentration
is acceptable in general. For long term constant charge or discharge
regimes, or for high pulsating currents, it would be necessary to
find limiting conditions of discharge time and/or current intensity
to assure that the electrolyte solution along the cell will not run out
of electrolyte in any place. The procedure proposed in [25] could
be followed for this purpose.

3. Spatial semidiscretization approach

Spatial semidiscretization, also known as the method of lines,
consists on approximating the state variable in a set of discrete
points, arbitrarily located in the spatial domain, by means of a sys-
tem of ordinary differential and algebraic equations. For simplicity,
the state and position variables c and r are normalized against the
maximum value cmax and the radius R of the representative particle,
respectively. Then the state Eq. (1) is rewritten as

∂�

∂t
= K

1
	2

∂

∂	

(
	2 ∂�

∂	

)
(12)
and boundary conditions (2) take the form

˛(t) = ∂�

∂	

∣∣∣∣
	=0

= 0 and ˇ(t) = ∂�

∂	

∣∣∣∣
	=1

= −Rjn
D

, (13)



1 rnal of

w
E
f

p
s

o
a
e
a
q
o
i
b

�

T
p
t

(
B
e
t
a
B
c
m
d
t
o
c
n

p
s

�

�

V

w
e
a

4

d
fi
t
t
d
m
t
b

d

0270 A. Romero-Becerril, L. Alvarez-Icaza / Jou

here K = D/R2, �(t, 	) = c(t, r/R)/cmax, 	 = r/R and {�,  	} ∈ [0, 1].
lectrode state-of-charge, which is needed to evaluate the objective
unction (10), is then � = �(t, 1).

Applying the spatial semidiscretization approach, the diffusion
roblem (12) and (13) is approximated for each electrode by the
ystem of linear ordinary differential equations

d�

dt
= K
(

A� + Bˇ
)

, (14)

ver the whole set of points 	i, with i = 1, 2, . . .,  N, or just in
 subset. Depending on the discretization method, a differential
quation does not exist at specific points, usually the bound-
ries. This happens for the finite difference and the differential
uadrature methods applied in a classical fashion. Electrode state-
f-charge � = �(t, 1) = �N, which lies in the outermost boundary, it
s calculated as a linear combination of the elements of � and the
oundary condition ˇ, such that

 = C� + Dˇ. (15)

he value of state variable at 	 = 0 is not of interest for the single-
article model. However, �(t, 0) = �1 is needed for evaluations in
ime domain and could be calculated similarly to �N.

Although �N ∈ � for the finite element method, representation
15) is also valid for such discretization method. Matrices A ∈Rq×q,

 ∈ R
q×1, C ∈ R

1×q and D ∈ R  are a result of discretization and their
lements are different in general, depending on the related elec-
rode, the discretization method and the number of points as well
s their distribution. Matrices B and D are the second column of

ˆ
 ∈ R

q×2 and D̂ ∈ R
1×2, respectively. The first column of B̂ and D̂

orresponds to the boundary condition ˛, which is out of the for-
ulation due to its null influence. Index q, defined later for each

iscretization method, is the length of vector � and also represents
he order of the system of differential Eq. (14).1 Thus, qp is the order
f the subsystem which approximates the diffusion equation asso-
iated to the positive electrode and qn is similarly defined for the
egative electrode.

According to the spatial semidiscretization approach, the com-
lete single-particle electrochemical model is approximated by the
ystem of ordinary differential and algebraic equations

d
dt

[
�p

�n

]
=
[

KpAp 0
0 KnAn

] [
�p

�n

]
+
[

−
pBp


nBn

]
I, (16)

p = Cp�p + DpI, (17)

n = Cn�n + DnI, (18)

 = Up(�p) − Un(�n) − R�I, (19)

here 
 = R/(DaFıA).  In (16), dynamics of positive and negative
lectrodes are put together and then the order of the complete
pproximated model is Q = qp + qn.

. Discretization methods

Some approximations based on spatial semidiscretization for
iffusion problem (1) and (2) have been reported. For example, a
fth order finite element approximation is proposed in [35] and
he finite difference method is applied in [39]. Nevertheless, in nei-
her of both works it is specified why to choose one or the other
iscretization method or how to determine the order of approxi-

ation. Thus, the aim of this work is to identify which one among

hree discretization methods, combined with four grids, offers the
est trade off between low order and accuracy for the diffusion

1 Unless stated otherwise, in this paper order always refers to the number of
ifferential equations in the resulting system.
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problem (12) and (13): finite difference, finite element and differ-
ential quadrature. In addition, two  criteria for order selection are
explored and compared. In these subsections, a brief overview of
the considered discretization methods is presented. All of them are
applied in a classical fashion.

4.1. Finite difference method (FD)

The three-point centered finite difference is maybe the most
popular discretization method. In this case, for one dimension prob-
lems, derivatives of any order with respect to x of a function f(x)
are approximated throughout a grid by means of point operators,
which depend on f(x) evaluated in the point of interest xi and the
neighboring points xi−1 and xi+1. Operators are derived by taking
linear combinations of Taylor series of f(xi−1), f(xi) and f(xi+1) around
xi, as well as ∂f(x1)/∂x and ∂f(xN)/∂x when necessary. See [41,42] for
more details and further FD schemes.

With the three-point centered FD method it is not possible to
formulate differential equations at the boundary points 	1 = 0 and

	N = 1, then, state vector is � =
[
�2 �3· · ·�N−1

]�
with �i = �|	i

and q = N − 2. It is convenient to take the expanded form

∂�

∂t
= K

(
∂2�

∂	2
+ 2

	

∂�

∂	

)
(20)

of Eq. (12), whose discretization with the introduction of boundary
conditions results in

d�i

dt
= K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑
k=i

(
bi,k + 2

	i
ai,k

)
�k + c1  ̨ for i = 2,

i+1∑
k=i−1

(
bi,k + 2

	i
ai,k

)
�k for i = 3, . . . , N − 2,

i∑
k=i−1

(
bi,k + 2

	i
ai,k

)
�k + cN  ̌ for i = N − 1,

(21)

where N is the total number of points. State variable �(t, 	) is
approximated at boundaries 	 = 0 and 	 = 1 through the expressions

�1 = d1  ̨ + d2�2 + d3�3, (22)

�N = dN−2�N−2 + dN−1�N−1 + dNˇ, (23)

that can be obtained from a combination of the first and second, and
second and third lines of (21), respectively. Coefficients ai,k and bi,k
are related to the first and second spatial derivative and, in addition
to cN and d◦, are explicitly calculated in function of discretization
points as shown in Table 1, whereas c1 is irrelevant here and in all
cases as  ̨ = 0. Once coefficients are known, (21) and (22) could be
easily brought to matrix form (14) to (15).

4.2. Finite element method (FE)

This is also a well known discretization method and is widely
used to simulate multidimensional problems with irregular geome-
tries because of its easy numerical assembling. For one dimensional
problems and taking the simplest formulation, the aim of the FE
method is to approximate the profile of f(x) by linear segments like

f (x) ≈ xi+1 − x
f (xi) + x − xi f (xi+1), (24)
xi+1 − xi xi+1 − xi

where the factors of f(xi) and f(xi+1) are called aspect functions. With
this method it is possible to define ordinary differential equations
in every point when Neumann type boundary conditions as (13)
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Table  1
Coefficients for the FD method.

i Coefficients

1 d2 = (	3−	1)2

(	3−	2)(	3+	2−2	1) d3 = −(	2−	1)2

(	3−	1)(	3+	2)

2 b2,2 = −2
(	3−	2)(	3+	2−2	1) a2,2 = −2(	2−	1)

(	3−	2)(	3+	2−2	1)

b2,3 = − b2,2 a2,3 = − a2,2

3 bi,i−1 = 2
(	i−	i−1)(	i+1−	i−1) ai,i−1 = −(	i+1−	i )

(	i−	i−1)(	i+1−	i−1)

.

.

. bi,i = −2
(	i−	i−1)(	i+1−	i )

ai,i−1 = 	i+1−2	i+	i−1
(	i−	i−1)(	i+1−	i )

N − 2 bi,i+1 = 2
(	i+1−	i )(	i+1−	i−1) ai,i+1 = 	i−	i−1

(	i+1−	i )(	i+1−	i−1)

N − 1 bN−1,N−2 = 2
(	N−1−	N−2)(2	N −	N−1−	N−2)

aN−1,N−2 = −2(	N −	N−1)
(	N−1−	N−2)(2	N −	N−1−	N−2)

bN−1,N−1 = − bN−1,N−2 aN−1,N−1 = − aN−1,N−2

cN = 2+	N−1−	N−2
2	N −	N−1−	N−2

N dN−2 = −(	N −	N−1)2

(	N−1−	N−2)(2	N −	N−1−	N−2)

(	N −	N−2)2

a
p

C
e

R

f
a
t
F
c
s
e
b

T
C

dN−1 = (	N−1−	N−2)(2	N −	N−1−	N−2)

dN = (	N −	N−1)(	N −	N−2)
(2	N −	N−1−	N−2)

re given. In this case � =
[
�1 �2· · ·�N

]�
and q = N. The diffusion

roblem (12) and (13) is approximated by

d�i

dt
= K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑
k=i

bi,k�k + c1  ̨ for i = 1,

i+1∑
k=i−1

bi,k�k for i = 2, . . . , N − 1,

i∑
k=i−1

bi,k�k + cN  ̌ for i = N − 1.

(25)

oefficients bi,k and cN, shown in Table 2, are found by solving the
rror integral function

i = −
∫ 	i+1

	i−1

Wi

[
K

1
	2

∂

∂	

(
	2 ∂�

∂	

)
− ∂�

∂t

]
(26)

or each grid point, including the boundaries. The integral is evalu-
ted in two parts, one for each element associated to 	i, and taking
he appropriate aspect function as weight Wi (Galerkin’s method).
or the temporal derivative of �,  the lumped formulation has been

onsidered, which consists on assuming the term ∂�/∂t as a con-
tant for the point 	i of interest and half of each of the two  adjacent
lements see [43]. The consistent formulation has been discarded
ecause of its probed tendency to produce oscillations.

able 2
oefficients for the FE method.

i Coefficients

1 b1,1 = 	3
1
−	3

2[
1
8 (	1+	2)3−	3

1

]
(	1−	2)2

b1,2 = − b1,1

2 bi,i−1 =
−8(	3

i−1
−	3

i
)[

−(	i−1+	i )
3+(	i−	i+1)3

]
(	i−1+	i )

2

.

.

. bi,i = 8[
−(	i−1+	i )

3+(	i−	i+1)3
]

(	i−1+	i )
2

[
	3

i−1
−	3

i

(	i−1−	i )
2 +

	3
i
−	3

i+1

(	i−	i+1)2

]
N − 1 bi,i+1 =

−8(	3
i
−	3

i+1
)[

−(	i−1+	i )
3+(	i−	i+1)3

]
(	i+	i+1)2

N bN,N−1 = −(	3
N−1

−	3
N

)[
	3

N
− 1

8 (	N−1−	N )3
]

(	N−1−	N )2
bN,N = − bN,N−1

cN = 	2
N

1
3 	3

N
− 1

24 (	N−1+	N )3
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4.3. Differential quadrature method (DQ)

In contrast to both methods described before, differential
quadrature is less popular despite its generality, easy implemen-
tation and good approximations. It is based in the assumption
that some smooth function f(x) can be approximated by a poly-
nomial like

∑N
k=1Ckxk−1 or a trigonometric series of form A0 +∑N/2

k=1(Ak cos kx + Bk sin kx).  The first case is called polynomial dif-
ferential quadrature (PDQ) and the second case corresponds to the
Fourier-based differential quadrature (FDQ). As a consequence of
this formulation, any differential operator ∂nf(x)/∂xn of order n is
approximated at xi by linear combinations of the functional values
of f(x) at every discretization point [44], not just at adjacent points
as for FD and FE.

When applied in a classical way, no differential equations can
be stated for the boundary points with the DQ method (see [45] for
imposition of boundary conditions at interior points), and � and q
are the same that for FD. In general, the expanded form (20) of (12)
is discretized as

d�i

dt
= K

[
N−1∑
k=2

(
b̂i,k + 2

	i
âi,k

)
�k + ciˇ

]
for i = 2, . . . , N − 1.

(27)

It should be underlined that there is a coefficient ci for each point
because  ̌ has a direct influence in every location.

Due to imposition of boundary conditions, coefficients âi,k, b̂i,k

and ci are indirectly calculated in function of the discretization
points 	i through the more elemental coefficients ai,k and bi,k,
related to the first and second derivative as well, such that

b̂i,k = bi,k + P
[
a1,k(bi,NaN,1 − bi,1aN,N) + aN,k(bi,1a1,N − bi,Na1,1)

]
,

(28)

âi,k = ai,k + P
[
a1,k(ai,NaN,1 − ai,1aN,N) + aN,k(ai,1a1,N − ai,Na1,1)

]
,

(29)

ci = P
[

bi,Na1,1 − bi,1a1,N + 2
	i

(ai,Na1,1 − bi,1a1,N)
]

, (30)

where P = (a1,1aN,N − a1,NaN,1)−1. At boundaries, state variable �(t,
	) is approximated by the equations

�1 = P

[
−a1,N  ̌ +

N−1∑
k=2

(a1,NaN,k − aN,Na1,k)�k

]
, (31)

�N = P

[
−aN,1  ̌ +

N−1∑
k=2

(aN,1a1,k − a1,1aN,k)�k

]
. (32)

In the case of PDQ, coefficients ai,k are

ai,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

N∏
j=1,j /=  i

(	i − 	j)

(	i − 	k)
N∏

j=1,j /=  k

(	k − 	j)

for i /= k, {i, k} = 1, . . . , N

−
N∑

a for i = k, {i, k} = 1, . . . , N.
⎩
k=1,k /=  i

i,k

(33)

Likewise, for FDQ
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i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∏
j=1,j /= i

sin((	i − 	j)/2)

sin((	i − 	k)/2)

N∏
j=1,j /=  k

sin((	k − 	j)/2)

for i /= k, {i, k} = 1, . . . , N

−
N∑

k=1,k /=  i

ai,k for i = k, {i, k} = 1, . . . , N.

(34)

In both cases, if coefficients ai,k are the elements of a matrix W(1),

hen bi,k is an element of matrix W(2) =
[
W(1)

]2
.

.4. Distributions of discretization points

Accuracy of discretization methods depends on a great extent
n the location of discretization points. For this reason, four grids
re tested along with the discretization methods.

Uniform distribution (UD): Discretization points are evenly
laced throughout the domain of interest.

Chebyshev–Gauss–Lobatto distribution (CGL): points become
loser towards the domain boundaries according to

i = 1
2

(
1 − cos

i − 1
N − 1

�
)

for i = 1, . . . , N. (35)

oots of shifted Legendre polynomials (RLP): Legendre associated
olynomials are deducted from the recursive formula

n+1( 	̄) = (2n  + 1) 	̄Pn( 	̄) − nPn−1( 	̄)
n + 1

, (36)

ith P0 = 1 and P1 = 	̄. Roots of such polynomials lie on 	̄ ∈ (−1, 1).
fter shifting the roots to the domain 	 ∈ (0, 1) by means of the

ransformation 	̄ = 2	 − 1, and including the auxiliary points 	1 = 0
nd 	N = 1, the elements of the resulting set could be used as dis-
retization points.

Proportional distribution (PD): As stated in [43], results from FE
ethod can be improved if the grid is tightened where changes in

he variable of interest are more pronounced. For this grid, points
ecome closer towards the boundary point 	 = 1 in a square pro-
ortion defined by

i =
√

i − 1
N − 1

. (37)

uch heuristic distribution is proposed because it is known that
he state variable tends to have a parabolic profile in the spatial
ariable.

. Order selection

The two order selection or truncation criteria suggested but not
iscussed in [30] are explored in this section. The first is based in
he model bandwidth selection whereas, in the second, a residue
nalysis is carried out. In both cases, the supposition of a specific
rofile for the boundary condition ˇ(t), the input of each electrode
ubsystem, plays a key role. In particular, it is considered that the
urrent profile used in [35], the FreedomCAR Hybrid Pulse Power
haracterization (HPPC) [34], is applied to the Li-Ion cell. One cycle
f that test signal consists on three constant stages: a 30 A and 18 s
ischarge pulse, an open-circuit (0 A) relaxation period of 32 s and,

nally, a 22.5 A and 10 s charge pulse. Nevertheless, it is helpful first
o study the case where  ̌ is a simple rectangular pulse as results are
traightforward extended for every signal composed of rectangular
ulses of any amplitude and duration.
Fig. 1. Energy spectrum of a rectangular pulse.

5.1. Truncation by bandwidth selection

This criterion consists on choosing the order of the system such
that its spectrum covers all or, at least, the major part of the band-
width associated to a test signal. Supposing  ̌ is a rectangular pulse

ˇ(t) =
{

1 for t ∈ [0, d)
0 for t ∈ [d, ∞),

(38)

of unitary amplitude and duration d > 0, it can be easily shown that
its energy spectrum is given by

E(ω) =
∣∣∣ ˆ̌ (ω)

∣∣∣2 = d2sinc2
(

ωd

2�

)
, (39)

where ˆ̌ (ω) is the Fourier transformation of (38) and
sinc(x) = sin (�x)/�x. From Fig. 1 it is observed that the first
zero of (39) occurs at ω = ± 2�/d. Furthermore, taking the integral
of (39) over the interval ω ∈ [− 2�/d, 2�/d], it is concluded that
∼90% of energy is contained in the bandwidth ω ∈ [0, 2�/d].

The characteristic values m of the diffusion problem (12) and
(13) could be found solving the associated regular Sturm–Liouville
problem for the homogeneous case [46]. All are real and nonnega-
tive [35] such that

m =
{

0 for m = 1
ym > 0|ym = tan ym for m > 1,

(40)

and the transient response of the solution �(t, 	) of (12) and (13)
to any input  ̌ will be determined by modes of the form exp (pmt),
with pm = −K2

m, for m = 1, 2, . . . Let pq be the constant of the faster
mode. Then, with this truncation criterion, it should be satisfied
that |pq | ≥ 2�/d to ensure that the reduced order model spectrum
covers the bandwidth where most of energy of the input signal is
concentrated, which implies that

2
q ≥ 2�

Kd
. (41)

When ˇ consists of more than one pulse, it is enough just to study
that of minimum duration because its 90%-energy bandwidth actu-
ally covers more than that for longer duration pulses.

5.2. Truncation by residue analysis

The output function (10) or (19) depends on the concentration
of Li+ evaluated just at the surface of the representative particle
of each electrode, namely, � = �(t, 1). If variables  ̌ and �(t, 1)
are defined as input and output signals, respectively, the transfer

function (TF) which defines the response of �(t, 1) to  ̌ is

G(s, 1) = �̂(s, 1)
ˆ̌ (s)

= − tanh(
√

Ks)

tanh(
√

Ks) − √
Ks

, (42)
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here ˆ̌ (s) and �̂(s, 1) are the Laplace transformations of ˇ(t) and
(t, 1) (see [30,35]).
Transfer function G(s, 1) is also understood as the impulse

esponse of �̂(s, 1) and its modal expansion results in the infinite
eries

(s, 1) = K

(
3
s

+ 2
∞∑

m=2

1
s − pm

)
, (43)

hose poles pm are defined above. This expression shows that
odes related to nonzero poles are equally important and no trun-

ation criteria could be established from the impulse response.
pplying the input pulse (38), with Laplace transformation

ˆ (s) = 1
s

(
1 − e−ds

)
, (44)

he expansion of the convolution between G(s, 1) and ˆ̌ (s) is

(s, 1) ˆ̌ (s) = K

[
3
s2

+ 2
∞∑

m=2

1
pm

(
1

s − pm
− 1

s

)](
1 − e−ds

)
. (45)

n this case, each mode is weighted by a residue resm = 2K/pm, which
ecays as its associated mode becomes faster. This fact allows
o define a truncation criteria. Clearly, the most important mode
elated to a nonzero pole is the second (m = 2). Then, the order of
he approximation in (14) could be selected such that

resq

res2

∣∣∣ =
∣∣∣∣p2

pq

∣∣∣∣ = 2
2

2
q

≤ ε, (46)

here ε � 1 is an arbitrary parameter that could be interpreted as
n error measurement.

Moreover, if an oscillating input ˇ(t) = sin (ω0t) is chosen, the
xpanded response results as

(s, 1) ˆ̌ (s) = K

(
3

ω0s
+ 2

∞∑
m=2

ω0

ω2
0 + p2

m

1
s − pm

+ b0s + c0

s2 + ω2
0

)
, (47)

here coefficients

0 = −3
ω0

− 2
∞∑

m=2

ω0

ω2
0 + p2

m

and c0 = −2
∞∑

m=2

pm

ω2
0 + p2

m

(48)

efine the steady-state response. In this case, residues resm =
Kω0/(ω2

0 + p2
m) are also functions of frequency ω0 and take their

aximum value resm = 2K/|pm| at ω0 =| pm |. Then, criterion (46)
an be formulated taking the maximum residues resm:

resq

res2

∣∣∣∣ =
∣∣∣∣p2

pq

∣∣∣∣ = 2
2

2
q

≤ ε. (49)

n this case, the response is negligible whether ω0 | pq |. When the
ulse (38) is considered as an infinite sum of oscillating functions,

nterpretation of this last result could be that the response due to
omponents of frequency higher than |pq| could be neglected.

Based on a modal grouping of an expansion similar to (45),
btained for a unit step input signal, a low order and large band-
idth transfer function approximated to (42) was  synthesized in

30]. In contrast, expansions (43), (45) and (47) are used in this
aper to show that simple residue analysis could brought a prac-
ical order selection criterion for the discretized state equations.

t should be shown later that reasonably results are straightfor-

ard obtained without further alterations of the semidiscretization
pproximations, as could be suggested by the residue grouping
ethod.
 Power Sources 196 (2011) 10267– 10279 10273

6. Other approximations

Whereas spatial semidiscretization is a very general approach,
most of reduced order approximations reported in the literature
for the solid phase diffusion problem (1) and (2) are valid just
under constant charge or discharge input currents. For instance,
an expression based on the Dunhamel’s superposition integral,
valid either for short or long periods of operation, is proposed
in [16,47] to obtain more efficiently numerical solutions of the
whole electrochemical model. Simple approximations adjusted to
the analytic solution are presented in [35,48],  also for short time
and steady-state predictions. In [17,25] an equation representing
the steady-state solution is used to analyze the solid phase diffusion
limitations and determine the capacity of a cell.

For time varying input rates, two dynamic approximations
based on low order polynomials are presented and explicitly solved
for some input profiles in [27]. For the first, it is assumed that
lithium concentration c can be described by a second order poly-
nomial in r of form c(r, t) = a(t) + b(t)(r/R)2. Solving for weights a(t)
and b(t) results

dc̄

dt
= −3

R
jn

c|r=R = c̄ − R

5D
jn,

(50)

which is a first order approximation and just keeps the dynamics
associated to the average lithium concentration c̄ inside a spheric
particle.

Taking the fourth order polynomial c(r,
t) = a(t) + b(t)(r/R)2 + d(t)(r/R)4 and now solving for a(t), b(t)
and d(t) results the second order approximation

dc̄

dt
= −3

R
jn

dq̄

dt
= −30D

R2
q̄ − 45

2R2
jn

c|r=R = c̄ − 8R

35D
q̄ − R

35D
jn,

(51)

where q̄ is the volume-averaged concentration flux, which defines
the average change of concentration c(t, r) with respect to the posi-
tion r. q̄ is calculated by integrating of ∂c/∂r along r on the domain
r ∈ [0, R] (see [27] for more details). This approach is applied to
the single-particle model for estimation of the state-of-charge in
[38,40], state-of-health in [28] and for validation of reduced order
models through numerical simulations in [20,31,33].  Because of
their recurrent appearance in the literature, (50) and (51) are also
tested and compared with the semidiscretization approximations
described above.

Some other approximations have been proposed in the fre-
quency domain. In [29] the exact transfer function from Jn(s) to C(s,
R), the ratio of the Laplace transformations of jn(t) and c(t, R) = c | r=R,
is approximated through a lumped transfer function whose order is
arbitrarily proposed with poles optimally found for a certain band-
width. A similar approach is developed in [30] although, in this case,
poles are found by grouping in frequency belts the residues associ-
ated to a unit step input and taking the weighted average of their
amplitude.

7. Results and discussion

7.1. Order selection

Truncation criteria brought contrasting results. The first cri-

terion is too conservative and drives to relative high order
approximations; in this case order means the number of ordinary
differential equations resulting in the approximations. For the neg-
ative electrode results that, according to (41), 2

n,q ≥ 3141.6 and the
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value problem solver for parabolic–elliptic partial differential equa-
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rst value which accomplish that condition is 2
n,19 = 3375.9. Simi-

ar results are obtained for the positive electrode. In this case 2
p,q ≥

696.5 and then 2
p,14 = 1796.7. In summary, the negative elec-

rode subsystem results of order qn = 19 whereas, for the positive
lectrode, the subsystem is of order qp = 14. The whole approxi-
ated single-particle electrochemical model is of order Q = 33.
The plot of normalized residues |resp,m/resp,2| = 2

2/2
m of

xpansion (45) against the index m is shown in Fig. 5. Defining
rbitrarily ε = 0.05 in (46) means that amplitude of the residue asso-
iated to the faster characteristic value will be 5% the amplitude of
hat for the slower mode. Taking such value for ε the result is that
ubsystems of both electrodes would be of order qn = qp = 7 because
2
2/2

q = 2
2/2

7 < 0.05 is held as required in condition (46). Then,
he whole approximation is of order Q = 14, which is less than half
f the order calculated with the bandwidth criterion.

Approximations are first evaluated in the time domain to have
 preliminary surmise about which of them has the best trade off
etween low order and accuracy. In this case, the test signal con-
ists in a rectangular pulse followed by a relaxation time. Then,
he frequency response of approximations is compared against that

f the analytic transfer function (TF) related to the state equation
n order to confirm the results obtained in the time domain tests.
inally, representative cases of all considered approximations are
pplied to the single-particle model and their response to the HPPC
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Fig. 2. Results of tests in
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test signal is compared against experimental data extracted from
[35].

7.2. Time domain tests

Time was normalized such that � = Kt,  where K = D/R2, and
experiments were carried out in the interval � ∈ [0, 0.45]. The
pulse

ˇ(�) =
{

1 for � ∈ [0,  0.15)
0 for � ∈ [0.15,  0.45]

(52)

was selected as test signal because it allows the system to reach
the steady-state when a constant input is forced, ˇ(�) = 1, as well as
during the relaxation stage, ˇ(�) = 0. Programming was  carried out
with MathWorks® MATLAB®. The base solution was  numerically
tions (PDEs) in one dimension, based on the algorithm proposed
in [49]. The algorithm employed by the solver performs a spatial
semidiscretization of parabolic and hyperbolic PDEs by a piecewise
nonlinear Galerkin/Petrov–Galerkin method whose truncation
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 the time domain.
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Fig. 3. Time profiles for approximations of

rror is of second order.2 A vector of 200 elements uniformly dis-
ributed on the space domain was chosen. Time integration, for
he base solution and all the approximations, was  solved with the
de15s routine, a variable order and multistep implicit algorithm
or stiff problems, which is based on numerical differentiation (see
50] for more details). Optionally, the solver uses the backward dif-
erentiation formulas known as Gear’s method. A time vector of
000 elements evenly separated was specified for the base solu-
ion and the approximations. The solver includes a scalar relative
rror tolerance and a vector of absolute error tolerances for which
he default values 1 × 10−3 and 1 × 10−6 were kept, respectively.

Each discretization method was tested along with the four point
istributions described in Section 4.4.  The total error was individ-
ally calculated for each combination using the function

T = L2{�T (t) − �base(t)}
L2{�base(t)} × 100%, (53)

here vector �T(t) is formed by the state vector �(t) and the values
f �1(t) and �N(t) related to the currently tested approximation,

base results from interpolating the base solution on the corre-
ponding grid and L2{◦} implies the Lebesgue 2-norm. Interpolation

as carried out with the pdeval routine, which approximates the

ariable �(t, 	) and its derivative ∂�(t, 	)/∂	 at any specified point
sing the pdepe routine.

2 In this case order is related to the truncation error of the numerical method.
 q = 7 using proportional distribution (PD).

Error of approximations evaluated in the time domain are
shown in Fig. 2. Excluding the FE method, approximations show
their best performance when RLP were used, but similar results are
observed for the CGL distribution, which is easier to calculate. In
particular, accuracy of PDQ method stands out, even for low order
approximations as shown in Fig. 2c. This result is expected as ordi-
nary differential equations resulting from applying the differential
quadrature method are strongly coupled. In other words, informa-
tion from every discretization point is used to infer the value of the
state variable at any point of interest. For approximations (50) and
(51) based in 2nd and 4th order polynomials, because of no grid is
related to these approaches and concentration of Li+ is of interest
just at the surface of representative particles, error was calculated
just at 	 = 1 resulting of 9.12% and 1.57%, respectively. For the first
case, error is too high whereas the second approximation is better
than any of the same order.

In general, for all approximations, error ET decreases whereas
order q increases as expected for consistent methods. An excep-
tion occurs for PDQ and FDQ when PD is used; in this case,
those methods have their worst error. PD produces large errors
in 	 = 0 an neighboring points as shown in Fig. 3c and d. This
phenomenon could be explained because points become more sep-
arated and with similar ordinate towards 	 = 0. Approximation of

spatial derivatives of boundary conditions and state equation lose
accuracy, inducing growing errors for high order approximations
as shown in Fig. 2c and d. Whether prior knowledge about the spa-
tial profile of state equation exist, it should be a good choice to
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approximations, mentioned in Section 5 and, according to (40), in
this case is |p14/K |  = 2

14 = 1796.7. For more generality, the nor-
malized frequency ω̄ = ω/K is defined.
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Fig. 4. Results of test

ighten up the grid where more pronounced changes are found as
uggested in [43]. Thus, PD results to be favorable for FE as shown
n Figs. 2b and 3b but does not benefit any other method. On the
ther hand, the FD method has its worst behavior with UD, used in
39], as shown in Fig. 2a.

.3. Frequency domain tests

Results discussed so far give a general outlook about the accu-
acy of different discretization methods along with some grids.
owever, the test function used is very specific and similar results
annot be ensured in general for different input profiles. Thus, dis-
retization methods were tested also in the frequency domain. In
his case, just the best and worst approximations distinguished
ith the time domain tests were evaluated. Approximations

btained with PDQ and FDQ along to PD, the worst scenario of these
ethods, were also tested in the frequency domain despite they

re unfeasible because error calculated in time domain worsens as
rder q increases.

Frequency response of magnitude and phase of worst approx-
mations are shown in Fig. 4a and b, whereas responses of best

pproximations are shown in Fig. 4c and d. In both pairs of fig-
res the base response is that of the analytic TF (42). Responses
f approximations (50) and (51), which can also be brought to the
eneral form (14) and (15), are also included in figures. As similar
best app rox imation s

e frequency domain.

results were observed for higher and lower orders, semidiscretiza-
tion approximations of order q = 14 were arbitrarily selected as
examples for frequency response tests (14 is the order for approx-
imations of the positive electrode subsystem when truncation is
based on bandwidth selection). Also, in Fig. 4a–d, the vertical bar
represents the normalized module of the faster analytic pole pq of
2 3 4 5 6 7 8 9 10
0

Index of residues m

N

Fig. 5. Normalized residues associated to the pulsating input signal ˇ.



A. Romero-Becerril, L. Alvarez-Icaza / Journal of Power Sources 196 (2011) 10267– 10279 10277

0 10 20 30 40 50 60 70
3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

C
el

l v
ol

ta
ge

  V
/V

From exps. in [35]
2nd order pol.
4th order pol.

approximation spolynomial-basedlow-orderusingvoltageCella

0 10 20 30 40 50 60 70
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time t/sTime t/s

N
eg

at
iv

e 
el

ec
tr

od
e 

st
at

e−
of

−
ch

ar
ge

θ n

Base solution
2nd order pol.
4th order pol.

polyno mial-basedlow-orderusingstate-of-chargeelectrodeNegativeb
app rox imation s

0 10 20 30 40 50 60 70
3.52

3.54

3.56

3.58

3.6

3.62

3.64

3.66

3.68

3.7

3.72

C
el

l v
ol

ta
ge

  V
/V

From exps. in [35]
FD + UD
FE + PD
PDQ + CGL
FDQ + CGL

approximationssemidiscretizationusingvoltageCellc truncationand

by bandwidth selection

0 10 20 30 40 50 60 70
0.35

0.375

0.4

0.425

0.45

N
eg

at
iv

e 
el

ec
tr

od
e 

st
at

e−
of

−
ch

ar
ge

θ n

Base solution
FD + UD
FE + PD
PDQ + CGL
FDQ + CGL

semidiscretizationusingstate-of-chargeelectrodeNegatived approxi-

selectionbandwidthbytruncationandmations

0 10 20 30 40 50 60 70
3.52

3.54

3.56

3.58

3.6

3.62

3.64

3.66

3.68

3.7

3.72

C
el

l v
ol

ta
ge

  V
/V

From exps. in [35]
FD + UD
FE + PD
PDQ + CGL
FDQ + CGL

approximationssemidiscretizationusingvoltageCelle truncation 26 and

0 10 20 30 40 50 60 70
0.35

0.375

0.4

0.425

0.45

Time  t/sTime  t/s

Time  t/sTime  t/s

N
eg

at
iv

e 
el

ec
tr

od
e 

st
at

e−
of

−
ch

ar
ge

θ
n

Base solution
FD + UD
FE + PD
PDQ + CGL
FDQ + CGL

approxi-semidiscretizationusingstate-of-chargeelectrodeNegativef

lying 

h
r
F
p
a
ω

F

analysisresidue by

Fig. 6. Results of test app

Because of their low order, approximations (50) and (51)
ave poor but reasonable responses. Particularly, the magnitude
esponse of (51), used in [33], is almost as good as that of the
D 14th-order approximations when using UD. However, the
hase responses of (50) and (51) shows the limitations of such

pproximations, being valid for low frequencies in the interval of

¯  ∈ [0,  10].
The worst approximations (see Fig. 4a and b) of PDQ and

DQ showed to have similar magnitude responses, better to that
analysisresiduebytruncationandmations

the HPPC current profile.

attached to FD and FE despite their growing error obtained in the
time tests. PDQ and FDQ approximations sustain a good agreement
with the magnitude base response until half decade after ω̄ = 2

14
and FD moves away almost one decade before reaching 2

14. On the
other hand, the phase responses of FD diverge too early from the

base response and that of PDQ and FDQ keep their agreement to
the base phase response until 2

14. Paradoxically, RLP distribution
gives the worst performance to FE in the time domain, but causes
its best frequency response.
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Table B.1
Values of single-particle model parameters and constants.

Descripion Symbol Value

Solid phase Li+ diffusivity Dn 2 × 10−12 cm2 s−1

Dp 3.7 × 10−12 cm2 s−1

Representative particle radius Rn 1 × 10−4 cm
Rp 1 × 10−4 cm

Specific contact area a an 17 400 cm−1

ap 15 000 cm−1

Element thickness ın 50 × 10−4 cm
ısep 25.4 × 10−4 cm
ıp 36.4 × 10−4 cm

Sectional cell area A 10 452 cm2

Film resistance at interphase Rf 20 � cm2

Effective solution conductivity a �n 10.87 × 10−3 S cm−1

�sep 20.08 × 10−3 S cm−1

�p 10.77 × 10−3 S cm−1

Maximum Li+ concentration cmax
n 16.1 × 10−3 mol  cm−3

cmax
p 23.9 × 10−3 mol  cm−3

Exchange current density i0,n 3.6 × 10−3 A cm−2

i0,p 2.6 × 10−3 A cm−2

Stoichiometry at 0% SOC �0
n 0.126

�0
p 0.936

Stoichiometry at 100% SOC �100
n 0.676

�100
p 0.442

Subscripts n Negative electrode
sep Separator
p Positive electrode
0278 A. Romero-Becerril, L. Alvarez-Icaza / Jou

On the other hand, in Fig. 4c and d, it is shown that the response
f semidiscretization approximations improves when using the
rids which also drove to the best results in the time domain. PDQ
nd FDQ magnitude response is close to the base response up to
ne decade after 2

14 and half decade for phase response. It should
e highlighted that behavior of FD improves when using RLP to the
xtent that such approximations is almost as good as PDQ in both
ime and frequency domains. However, for FE the result is opposite
gain; the frequency response worsens with PD.

.4. Test with the HPPC signal

The response to the HPPC signal of the single-particle
lectrochemical model is presented. The voltage evolution of
pproximations against the response profile reported in [35] for
8.3% of battery SOC, acquired from experimental tests in the same
ork, is shown. For tests, initial SOC was slightly adjusted to 57% as
ell as Rf from 20 to 23 � cm2. The pair of fast peaks at 52 s was not

nduced because of the lack of information about them. Neverthe-
ess, due to the sluggish nature of the system, their influence to the
ell response is not substantial. The evolution of negative electrode
tate-of-charge �n is also shown as, for this electrode, results from
runcation criteria are more drastic. In this case, the base solution
as solved numerically using the pdepe routine introduced above.

ig. 6a and b correspond to cell response when approximations
50) and (51) are applied. It is reported in the literature that those
pproximations work well for constant long time and low input cur-
ent regimes (see for example [20,28]) but, as shown, fail dramati-
ally for pulsating profiles due to their poor bandwidth and thus is
ot advisable to use this approach for complicated input signals.

For spatial semidiscretization approximations, the most typical
rid was considered for each case. UD is used for FD as in [39].
D is used for FE, which is similar to the grid used in [35]. Finally,
GL is used along with PDQ and FDQ as recommended in [44]. The
esponse of approximations is quite good when model order is cho-
en by bandwidth selection. Voltage evolution of approximations
s shown in Fig. 6c. Approximations related to FE, PDQ and FDQ

ethods follow very closely the experimental data taken from [35].
n particular, PDQ and FDQ are better than FE and seem to have
oth the same good accuracy. However, FD used along with UD as
eported in the literature, produces a noticeable error because it is
he worst grid choice for that method. Nevertheless, as discussed
efore, the error of FD can be improved whether RLP and CGL grids
re used instead of UD. In Fig. 6d, error of approximations is more
vident than in Fig. 6c because in the latter case �n is affected by
unction (A.2) of the negative electrode open circuit potential.

The response of the single-particle model when the order of
pproximations is chosen through the residue analysis is shown
n Fig. 6e and f. Voltage responses for PDQ and FDQ seem not to
ndergo important loss of quality despite the model order is less
han half of that obtained by bandwidth selection. Indeed, in this
ituation, these methods offer a better voltage response than FD
hen order is defined by bandwidth selection. The response of

E approximation slightly worsens with the order reduction and
rror of FD increases in a great extent. This is clearer again in the
esponse of negative electrode state-of-charge. Whereas PDQ and
DQ approximations could be still used for state-of-charge estima-
ion, FD and FE approximations are not useful when order is chosen
y the second criterion.

. Conclusions
In this paper the state equation of the single-particle elec-
rochemical model was studied with the goal of finding reduced
rder approximations that represent adequately the battery
ain dynamics for some given operation conditions. Spatial
 Power Sources 196 (2011) 10267– 10279

semidiscretization approach was  reintroduced for order reduc-
tion and three discretization methods, combined with four grids,
were applied in a classical fashion: finite difference, finite element
and differential quadrature. Because of their recurrent appear-
ance in the literature, low order dynamical approximations based
on second and fourth order polynomials were also evaluated and
compared against semidiscretization approximations. Addition-
ally, two  order selection or truncation criteria, suggested but not
explored in the literature, were discussed and contrasted. The first,
more conservative, consists on selecting the approximation band-
width such that it covers at least the major part of the energy
spectrum of some proposed signal test. The second criterion is
based in a residue analysis of the convolution between the state
equation and the test signal and drove to more practical results.

Approximations were first evaluated in the time domain to
have a preliminary surmise about which had the best trade off
between low order and accuracy. In this case, the test signal con-
sisted in a rectangular pulse followed by a relaxation time, whose
duration was  such that allowed to observe the whole transient
response under forced as well as under free excitation. The fre-
quency response of approximations was  also compared against
that of the analytic transfer function related to the state equation
in order to confirm the results obtained in the time domain tests.
Finally, representative cases of all considered approximations were
applied to the single-particle model and their response to the HPPC
test signal was compared against experimental data extracted from
the literature. Best results were obtained with discretizations based
on polynomial differential quadrature whereas it was also observed
that approximations based on low order polynomials have a very
poor performance for pulsating input currents.
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Faraday’s constant F 96 487 C mol−1

Ideal gas constant R 8.3143 J mol−1 K−1

Absolute temperature T 293.15 K (20 ◦C)

a Calculated from data in [29].
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ppendix A. Open circuit potentials

For the positive and negative electrodes, respectively:

p(�p) = 85.681�6
p − 375.70�5

p + 613.89�4
p − 555.65�3

p + 281.06�2
p

− 76.648�p + 13.1983 − 0.30987 exp
(

5.657�115
p

)
(A.1)

n(�n) = 8.00229 + 5.0647�n − 12.5780�1/2
n − 8.6322 × 10−4�−1

n

+ 2.1765 × 10−5�3/2
n − 0.46016 exp[15.0(0.06 − �n)]

− 0.55364 exp[−2.4326(�n − 0.92)] (A.2)

ppendix B. List of parameters

See Appendix Table B.1
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